加入收藏 | 设为首页 | 会员中心 | 我要投稿 通辽站长网 (https://www.0475zz.com/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 创业 > 点评 > 正文

用大数据赋能产品的 3 个锦囊

发布时间:2019-11-25 08:57:38 所属栏目:点评 来源:做站长
导读:我们都知道数据赋能产品,落在实践中,可以通过哪些方式来让数据融合盗产品设计中呢? 本文内容根据神策数据产品总监杜明翰在《数据分析-运营与产品场景的应用实践》主题沙龙中演讲整理所得。主要内容包括: 数据赋能产品的2个层面 锦囊 1:聚焦收益最大化

其二,在用户已经决定购买结算却没完成有效订单的转化,而其影响因素包括支付方式、邮递政策、优惠券、新用户注册。结合中东地区的支付特点,不难发现其主要转化障碍是支付方式的选择,包括在线支付和 COD 支付(Cash on Delivery ,货到付款,交货付现)。

关于两种支付方式,用户和企业各有青睐。

A 企业采用的是预售模式,购买周期较长,约 20 天左右才能收货,在这个环境下,用户更倾向于货到付款。而 A 企业因为是做的跨境交易,为早一点收到货款,当然更希望所有的用户采取在线支付的方式。

接下来,虚拟增长工作团队开始寻找支付方式导致转化率降低的核心影响因素。

分析结算时的订单金额不同区间的数据时发现:当结算的客单价在 0-50 美金时转化率仅有百分之十六点几,这部分用户数占整体的 70%,是主要的用户群体;且在这一区间流失的用户量占总体的 50%,也就是说在这个环节流失了一半用户。而客单价在 $50 以上,转化率在百分之六十几,也就是说,金额越贵,成单率越高,这是比较反常识的。

考虑到可能是运费问题导致的放弃支付,虚拟增长工作团队发现 $50 以下与 $50 -$99 的两个区间同样需要付运费,但后者可使用 COD 支付,转化率远比前者高。

所以,支付方式是主要影响因素。

虚拟增长工作团队开始聚焦支付方式进行分析。最终发现该企业的订单金额在 $50 以下只能使用信用卡支付,$50 以上才能使用货到付款。

很显然,因为信用卡付款需要绑卡等复杂操作,一部分用户直接放弃购买了,但百分之十几的转化率可能不仅是这一个原因导致的,所以虚拟增长工作团队又分析了一下信用卡支付的转化率,发现整体成功率仅为 59%。

为此,虚拟增长工作团队进行了在线支付的流程体验,发现其流程非常冗长相比 COD 的体验差很多,COD 的付款方式平常操作时间在 2 秒左右;而在线支付的方式平均操作时间是 8 分钟左右,而且 40% 的操作是失败的,进一步消耗了用户的决策成本。

最终得出的结论是在线支付方式成为用户购买流程最后的障碍,阻拦了绝大多数有购买意愿的用户。

精准定位问题后,产品根据分析发现和建议,迭代了优先级较高且改动较快的部分,如下:

关于投放广告,采取“投放广告的所见即所得”的方式,调整了广告深链接的逻辑,使用延迟深链接。前面提到,点击玩具套装广告并进行 APP 下载后的最终落地页是 APP 首页。为此,A 企业将最终落地页调整为投放广告时看到的玩具页面,采取操作后,转化率有一定的提升。

关于支付方式,采取“降低 COD 支付门槛”的方式。首先将沙特地区的运费 $19.99 降到 $15,后续将 $89 的包邮门槛降到 $6。两天后,A 企业直接取消 COD 最小 $50 金额限制,即可使用 COD 的价格范围从原 [50, 400] 扩大为 [0, 400],后续又针对促进转化在产品上做了些持续的细节优化。

采取完优化措施后发现,整体的转化率有了明显的提升,总转化率增长提升 132%。下图为调整广告深链接的逻辑和取消 COD 最小 $50 金额限制后的增长走势。

用大数据赋能产品的 3 个锦囊

用大数据赋能产品的 3 个锦囊

最终的转化率提升,增长目标达成,就大功告成了吗?

事实上,企业若要在良性的发展方向不断精进,还需要掌握一个方法论——产品数据复盘,包括从目标到结果再到分析继而迭代的全流程。

用大数据赋能产品的 3 个锦囊

此次增长目标达成后,A 企业的老板与分析师团队及 A 企业的业务团队进行了产品数据复盘。

在复盘的过程中,A 企业的老板提出 GMV 提高后,是否 COD 支付的拒签率也会提高?

分析师团队针对这一问题给出了解决方案:如果拒签率变高,可以再根据数据分析调整 COD 支付的门槛;如果拒签率并无明显变化,可以保持策略;如果拒签率忽高忽低,可继续细分拆解分析进行相应调整。

回顾整个定位问题、解决问题的过程,不难发现,最终是围绕购物的闭环体验来进行优化的,也再一次呼应了关注用户决策「过程」,而非「流程」体验最优。

事实上,「闭环」远比「流程」更重要。

举个例子,很多人都在无意识逛淘宝,甚至不知道自己因淘宝的个性化推荐等引导在淘宝中逗留了多长时间,而在用户无意识中,淘宝已经有意识了。

在淘宝看来,整个局面已经发生变化了。

淘宝的数据显示:在 2015-2016 年的期间,搜索引流量几乎占 70%,个性化推荐的流量仅占 30% 左右。但到了 2018 年年中,个性化推荐带来的 GMV 已经超过搜索所带来的 GMV。

并且,过去对用户的购买认知,是用户有购买需求并进行搜索,找到理想商品,然后加入购物车进行购买,最后等待商品到货。而现在的购买流程,是用户已经进行购买后,然后看到购物车底部或完成购买后的相关推荐再进行浏览,重复进入这个流程中。

可见,淘宝已经将购物的闭环体验发挥的淋漓尽致,电商企业可以酌情参考。

锦囊 2:大胆猜想,小步验证,最终用数据事实来验证直觉

大胆猜想,小步验证,最终用数据事实来验证直觉的方法在上面的案例中也有体现。

在 A 企业的增长案例中,整个过程中并没有做过多的 A/B 测试或灰度测试。事实上,在产品的实际优化过程中,很多企业采取的就是这种很直接的大胆猜想的方式,并进行快速的验证。因为产品优化的过程中,很多决策是相对可逆的,所以在产品设计的过程中不妨多做些大胆的猜想。

如,取消 COD(当然这是一个比较大的政策改动),找到这些关键点有时可起到四两拨千斤的作用,给最终的效益带来意想不到的提升。需要注意的是,企业在大胆猜想的基础上,还要不断进行验证。在验证的过程中,每一步及每一次改动都需要采集好数据,因为这就是你能掌握的事实,而事实才能来验证猜想。

其实,不管是产品改进的目标还是策略优化都不只是为了做一个流程的改进,而是将企业的整体收益最大化。

效益的提高包含两方面:我们本身公司运营的效率,如运营活动耗费的时间或成本降低;企业增加收益。

而在这个过程中,数据到底起到什么作用?

验证假设

(编辑:通辽站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

推荐文章
    热点阅读